Course	Credit		Contact	Total
Code	Hours	Fuels and Combustion	Hrs/Week	Contact Hrs
TEE-816	(Th-Pr)	(Elective)	(Th-Pr)	(Th-Pr)
	3.0-0	, , , , , , , , , , , , , , , , , , ,	3.0-0	45-0

Course Outline:

Fuels and types, combustion process, combustion mechanism, adiabatic flame temperature, flame propagation, stability, kinetics, combustion aerodynamics, gaseous detonations, flame ignition and extinction and condensed phase combustion. Solid burning equipment, stokers, pulverized coal burning systems, cyclone combustors, emissions, types of fluidized beds, fluidized bed combustion, fundamentals bubbling bed, gas and liquid burners types, gas turbine combustion systems, combustion modeling. Design of combustion systems for boilers, furnaces, gas turbines and IC engines, combustion chamber performance. Propellants Types, theory of combustion, energy balance calculations.

Eligibility Criteria:

B.E in Mech., Elect (Power), Chemical, Industrial, Process B.S (4-years) Or M.Sc. degrees in Physics

Recommended Books:

S. No.	Title	Author(s)	Assigned Code	Remarks
1.	Combustion	Irvin Glassman	IG	Text
2.	Principles of Combustion	Kenneth Kuan-yun Kuo	KK	Reference
3.	An Introduction to Combustion	Stephen Turns	ST	Reference
4	Combustion Processes in Propulsion	Gabriel Roy	GR	Reference

Course Objectives:

The overall objective of this course is to give a deep knowledge about the the characteristics of different types of fuel, and investigate into the factors governing efficient combustion. The course will also discuss the advanced knowledge about solid, liquid and gaseous fuels, their origin, classification, preparation procedure and characterization in terms of physico-chemical properties. Emphasis will be on the

combustion of various fuels in the light of thermodynamics and various combustion appliances are discussed. Various types of burner equipment will also be discussed for burning coal, oil, natural gas, wood, and low-grade fuels such as municipal waste and bio mass.

Learning outcome:

The focus of the course is to solve problems in industry. The course is intended to provide students with the following benefits:

- Understand the ongoing role of combustion of fossil and biomass-fuels, in providing a more sustainable energy source for society, and the environmental challenges to be met to achieve this
- Have a sound understanding of the principles of combustion
- Understand the complexities of industrial combustion processes
- Have a understanding of the mechanisms of combustion generated air pollution and the techniques that can be used to control them

No.	Topics	Text	Contact
		Book	Hours
1	Fuels	IG,KK	9
	Solid fuel, liquid fuels and gaseous fuels, Production, present	&ST	
	scenario and consumption pattern of fuels Fundamental		
	definitions, properties and various measurements, Definitions		
	and properties of solid fuels, Definitions and properties of		
	liquid and gaseous fuels, Various measurement techniques		
	Coal classification, composition and basis, Coal mining, Coal		
	preparation and washing, Combustion of coal and coke		
	making, Exploration of crude petroleum, Evaluation of crude,		
	Distillation, Secondary processing, Refinery equipments,		
	Natural gas and LPG, Producer gas, Other fuel gases		
2	Chemical Thermodynamics And Flame Temperatures	IG,KK	8
	Heats of reaction and formation, Free energy and the	&ST	
	equilibrium constants, Flame temperature calculations, Sub-		
	and supersonic combustion thermodynamics, Combustion		
	burners, Combustion furnaces. Calculation of calorific value of		
	fuels, Combustion air calculation		

Topics Covered:

	Chemical Kinetics		
	Rates of reactions and their temperature dependence,		
	Simultaneous interdependent reactions, Chain reactions,		
	Pseudo-first-order reactions and the" fall-off " range, The		
	partial equilibrium assumption, Chemical kinetics of large		
	reaction mechanisms.		
3	Flame Phenomena In Premixed Combustible Gases	IG,KK	6
	Laminar flame structure and laminar flame speed. Stability	&ST	
	limits of laminar flames. Flame propagation through stratified		
	combustible mixtures. Turbulent reacting flows and turbulent		
	flames. Stirred reactor theory. Flame stabilization in high-		
	velocity streams. Combustion in small volumes.		
4	Detonation	IG,KK	6
	Introduction to detonation phenomena. Hugoniot relations and	&ST	
	the hydrodynamic theory of detonations. The ZND structure of		
	detonation wave. The structure of the cellular detonation front		
	and other detonation phenomena parameters. Detonations in		
	nongaseous media		
5	Diffusion Flames	IG,KK	6
	Gaseous fuel jets, Burning of condensed phases, Burning of	&ST	
	droplet clouds, Burning in convective atmospheres		
	Ignition		
	Chain spontaneous ignition, Thermal spontaneous ignition,		
	Forced ignition, Other ignition concepts		
6	Environmental Combustion Considerations	IG,KK	4
	The nature of photochemical smog, Formation and reduction	&ST	
	of nitrogen oxides, SOx emissions, Particulate formation,		
	Stratospheric ozone		
7	Combustion Of Nonvolatile Fuels	IG,KK	6
	Carbon char, soot, and metal combustion, Metal combustion	&ST	
	thermodynamics, Diffusional kinetics, Diffusion-controlled		
	burning rate, Diffusion-controlled burning rate, Soot oxidation		